Adventures in Science

Hey, it’s April Fool’s Day! Let’s mess with our brains a little by tripping them up with some wicked paradoxes.

The great thinkers of history have come across a few puzzling ideas that looked good on paper but just didn’t jive with common sense. These contradictory or ambiguous ideas are known as paradoxes. This video quickly highlights some of the most well-known paradoxes. There are many others.

For more in-depth explanations of paradoxical fun check out Jim Al Khalili’s book, Paradox: The Nine Greatest Enigmas in Physics. This book includes a brilliant explanation of the dreaded Monty Hall paradox.

Here is a fun introduction to Monty Hall presented by mathematician, Marcus du Sautoy:

“You never know for sure if there is anything in the search… It’s an endless quest without knowing what your quest is.” –not even Carl Sagan

This boy has some great answers to tough questions. He understands that it is okay not to have all of the answers yet and to continue searching. He does a great job of avoiding filling in gaps in his knowledge with guesses or made-up stuff.

He struggles a bit during the question about events in life being predestined but we get to see him counter with questions about the question and finally admit he might be wrong. Brilliant!

MadLT Lily_impeller

Impeller designed by Jay Harman of PaxScientific.com. The impeller’s design was inspired by “freezing a whirlpool”. Variations on the same natural algorithm are used by many organisms such as cala lilies as seen above, and sea shells.

Homo sapiens has been around for about 200,000 years, give or take. We’re well adapted to hunting and scavenging and socializing and getting by as humans. However, a lot of other living creatures can do very clever things better than us. Take flying for example. For millenia humans saw birds take to the air and longed to join them. After centuries of trial and error we finally learned their secret and soared like eagles. What else can we learn from the natural world that can help us do what other organisms have already mastered?

Using an adaptation from a living organism for our own use is known as biomimicry. Biomimicry inspired something else that you may use every day, Velcro. Inventor, George de Mestral, saw the burrs attached to his dog’s fur after a walk. He studied the burr bristles under a microscope and noticed that the little hooks on the end were snagging his dogs fur and his clothing. From this he developed a material with tiny hook-like structures that became the reusable fasteners that we know so well.

The pictures below show how the hook parts of a piece of Velcro are similar in shape to the hooks at the end of each organic burr bristle.

velcro

(source)

Burdock Burr 2

(source)

Janine Beyrus, author of Biomimicry: Innovation Inspired by Nature, is considered the pioneer of the philosophy of asking nature the best way to do things. Her ideas have influenced scores of  inventors, researchers, engineers, designers, and programmers. Here is her TED Talk from 2009 in which she convinces us how much nature has to teach us:

 

Janine Beyrus mentions asknature.org in her TED Talk. I hope you will go check it out and use it to get inspired to make, solve, or improve something the way nature intended.

SuperVelcroSuit

Who is this @Cmdr_Hadfield tweeting from space with such infectious enthusiasm and posting sensational pictures of Earth from orbit? His name is Commander Chris Hadfield. He is a Canadian astronaut who is currently serving as a flight engineer aboard the International Space Station. We were so charmed by his tweets that we searched out this pre-launch interview with him. He is every bit as cool on video and great at describing his mission as an astronaut.

In March, Commander Hadfield will go from flight engineer to commander of the International Space Station’s Mission 35. He will be a real life spaceship captain just as he says in the video.

Instant kid science dance party pop hit! ❤ ❤ ❤

More Parry Gripp tunes here.

via deepseanews.com

Duro-Aina Adebola, Akindele Abiola, Faleke Oluwatoyin, and Bello Eniola engineered this generator that turns urine into electricity.

(source)

A group of four girls ages 14-15 demonstrated their urine-powered generator at the recent Maker Faire Africa in Lagos. The girls’ project also generated a lot of excitement and interest on the web over this last week. Although it won’t be able to compete with the energy output of coal or gasoline, this technique puts forward the possibility that urine could be tapped as one of many (cough) um, clean energy sources. There is probably a stinky pee smell, but clean in this case means it doesn’t give off CO2 emissions or other pollutants.

Let’s take a look at their process—

The Maker Faire Africa blog listed their method as such:

  • Urine is put into an electrolytic cell, which separates out the hydrogen.
  • The hydrogen goes into a water filter for purification, which then gets pushed into the gas cylinder.
  • The gas cylinder pushes hydrogen into a cylinder of liquid borax, which is used to remove the moisture from the hydrogen gas.
  • This purified hydrogen gas is pushed into the generator.

Along the whole way there are one-way valves for security, but let’s be honest that this is something of an explosive device…

The generated electricity powers a light bulb which is mostly hidden by the middle girl’s knee in the picture above.

The girls designed their system based on this paper by scientists from the Department of Chemical and Biomolecular Engineering, Ohio University. Here is a more reader-friendly article on the paper that you might want to check out before you decide to explore the  scientific paper.

There is also a good deal of scientific debate and skepticism over whether this is a useful or effective electricity generator. The comment thread below that blog post is a good sampling of the discussion.

Good science means hashing out the truth and not taking claims at face value.  The only way to know for sure if this process works is to replicate the girls’ setup. With appropriate mentoring and safety precautions, it would be great to see other kids working to recreate this idea. If it turns out that this works…awesome! Then young scientists can work to make improvements to the technique.

We look forward to the day we can feature the work of the first group of teens that powers a cell phone from this kind of pee-powered system. Game on.

William Kamkwamba, Awesome Hero

(source)

William Kamkwamba was born to a farming family in Malawi in Africa in 1987. His home and the homes of his neighbors didn’t have electricity or running water. The family’s crops depended on the amount rainfall that they received because their farm had no irrigation. When he was 14, a horrible drought struck Malawi  and the crops failed. Many Malawians died of starvation. William and his family survived but suffered horrific deprivation. His father was deep in debt from buying food for the family so couldn’t afford tuition. William had to drop out of school.

After surviving the famine, William was inspired by a textbook he borrowed from his local library called Using Energy to build a windmill to make electricity and eventually pump ground water from a well to irrigate the family’s farm. He was determined to give his family a more secure food supply with two maize harvests a year as well as an irrigated garden for a variety of vegetables.

William Kamkwamba slowly built his windmill from salvaged and modified scrap material. He describes how he did it in his autobiography The Boy Who Harnessed the Wind. The ingenuity involved in the design and construction of his windmill is astounding. This book is *highly* recommended to all young people over the age of 12. Read it. Listen to it. Do it.

There is also a picture book version of William Kamkwamba’s story for younger children because it is *that* good.